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Abstract
The challenge of reducing emissions of greenhouse gases (GHG) has stimulated great 
attention among policymakers and scholars in recent past, and a number of STIRPAT (Sto-
chastic Impacts by Regression on Population, Affluence, and Technology) studies on car-
bon emissions have been conducted. This paper contributes to that literature by: (i) stud-
ying per capita GHG emissions in the United States (US) adopting STIRPAT modeling 
framework; (ii) employing new explanatory factors like cattle population density, political 
willingness to address environmental problems, and educational attainment; and (iii) inves-
tigating whether emissions elasticities of various factors vary within the US or not. State-
level panel data over the period 1990–2014 are used, and partitioning of the sample is done 
with respect to two controlling factors: an indicator of political support to environmen-
talism and educational attainment. Results of heterogeneous slope parameters panel data 
models indicate that cattle density and affluence are major drivers of per capita GHG emis-
sions in the continental US. We find strong evidence of heterogeneity in emissions elas-
ticities across partitioned samples. Our grouping analysis suggests that in a diverse country 
like US, policymakers should not focus on the average relationships dictated by a single 
STIRPAT equation, but should account for regional differences if they want accuracy and 
higher effectiveness in climate policymaking.
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1  Introduction

About 16% of 2011 global carbon dioxide (CO2) emissions originate from the United 
States (US)—world’s largest historic greenhouse gases (GHG) emitter (Boden et al. 2015). 
However, the US did not participate positively in global climate negotiations and refused 
to set concrete GHG reduction targets until the Obama administration came to power. For a 
long time, there was no federal climate policy in place, but few makeshift initiatives at state 
level with uneven intensity were noticed. Finally in April 2016, the US ratified the 2015 
Paris Climate Accord to cut down their GHG emissions but withdrew from the pact in June 
2017 under a new political leadership. Interestingly, the governors of several states have 
refused to abandon the objectives of the Paris Agreement despite federal withdrawal from 
it. They have formed the US Climate Alliance to uphold the Paris Agreement (Gilmore and 
St. Clair 2017), and as of February 2018 this coalition includes 16 states contributing about 
25.5% of US CO2 emissions in 2014 and covering around 40.6% of US population in 2016. 
Public opinion is also divided on President Trump’s decision of US withdrawal from the 
Paris Agreement. The Washington Post/ABC News has conducted a poll on June 2–4, 2017 
to find that 59% of the American adults have opposed this decision.

Policy measures addressing GHG emissions in the US are diverse owing to differences 
in beliefs and concerns regarding climate change. Recently, Dietz et  al. (2015) find that 
states with more environment-friendly policies have cut their GHG emissions despite ris-
ing population and affluence, while other states which are not pro-environmental have 
experienced rising GHG emissions. This dichotomy is evident from Fig. 1 which illustrates 
the percentage change in per capita GHG emissions over 25 years (1990–2014). Ten states1 
out of the 48 contiguous states witness positive growth in their per capita emissions. More-
over, Fig. 2 depicting state-wise per capita GHG emissions in 2014 also corroborates the 
fact that states which have experienced positive growth in their per capita GHG emissions 
are also having higher per capita GHG emissions in 2014 as compared to their counter-
parts. Meanwhile, the nation as a whole experiences a decline in per capita emissions dur-
ing 1990–2014. Evidently, with a divided house, the US has reached a crossroads regard-
ing GHG abatement. In this context, a thorough econometric analysis along the line of 
‘Stochastic Impacts by Regression on Population, Affluence, and Technology’ (STIRPAT) 
modeling framework2 (Dietz and Rosa 1997) cannot only help in recognizing the main 
drivers of GHG emissions in the US, but also helps in educated policymaking.  

Our research is also motivated by a set of facts that arise from the growing STIRPAT 
literature exploring the impact of various socioeconomic and demographic variables on 
CO2 emissions. Although there exists a plethora of STIRPAT studies on CO2 emissions 
in various parts of the globe, studies on GHG emissions are rare. A notable exception is 
the work by Marcotullio et  al. (2013) who have used STIRPAT modeling framework to 
analyze global urban GHG emissions. Methane is the second largest contributor to GHG 
pool and has 21 times higher global warming potential than CO2, but has received little 

1  List of ten states: Oklahoma, Rhode Island, Illinois, Arkansas, Missouri, South Dakota, Mississippi, 
Iowa, Nebraska, and North Dakota.
2  Ehrlich and Holdren (1971) introduced a mathematical identity I ≡ PAT (I: environmental impact; P: pop-
ulation; A: affluence; T: technology) which has been used as a modeling framework for analyzing the main 
drivers of anthropogenic environmental impacts. In 1990s, scholars reformulated IPAT model to its stochas-
tic cousin named STIRPAT which allows both hypothesis testing as well as relaxes the implicit assumption 
of proportionality to conduct empirical research.
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attention in the STIRPAT literature. Similarly, livestock farming—one of the key anthropo-
genic factors causing GHG emissions—has been overlooked so far. Ruminant production 
is the largest source of methane (Ripple et al. 2014). The Food and Agriculture Organiza-
tion (FAO) appraises that livestock sector is responsible for 14.5% of world’s anthropo-
genic GHG emissions (Gerber et al. 2013). Besides the past contribution of livestock sector 
in GHG emissions, most crucial aspect to analyze would be the impact of its expansion 
in nearby future. Due to rising population coupled with increasing affluence, demand for 
livestock products is expected to rise. According to an estimate, till 2050 meat and milk 
demand would increase by 73% and 58%, respectively, from their consumption levels in 
2010 (FAO 2011). Thus, the contribution of livestock sector to GHG emissions remains 
crucial in coming future. Except for a couple of studies (e.g., York et al. 2003a; Jorgenson 
2006; Squalli 2017), scholars neglected methane emissions in STIRPAT analysis.

Next, we discuss some knowledge gaps in the existing US-specific GHG-based STIR-
PAT and related literature. First, although there exists few STIRPAT studies on the US CO2 

Fig. 1   Change in state-level per capita GHG emissions (1990–2014)

Fig. 2   State-level per capita GHG emissions in 2014
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emissions but only Squalli (2017) emphasizes on GHG emissions as a whole. The US is 
responsible for 30–60% of the growth in global anthropogenic methane emissions over the 
period 2002–2014, because of a 30% rise in methane emissions across the country (Turner 
et al. 2016), and it has the fourth largest cattle inventory of the world (FAO 2013). Accord-
ing to recent estimates, livestock production accounts for only 4.2% of total GHG emis-
sions, but livestock farms contribute about 31% of total anthropogenic methane emissions 
in the country (USEPA 2016). Between 1990 and 2012, methane emissions in the US have 
increased by more than two-thirds due to notable industrialization of livestock farming 
associated with large concentrated animal feeding operations and waste lagoons (USEPA 
2016). Second, factors like educational attainment and political ideology which are major 
contributors to public opinion and policy approach to environmental issues (Dietz et  al. 
2015; Zahran et  al. 2006), have not been sufficiently analyzed despite their importance. 
Third, recent STIRPAT literature show that steady change in population age composi-
tion causes variations in energy consumption behavior and associated carbon emissions in 
developed countries (e.g., Liddle and Lung 2010; Menz and Welsch 2012). Zagheni (2011) 
integrates IPAT framework and environmental input–output analysis to assess the effect 
of population age structure on CO2 emissions and studies the case of US using household 
level data for the year 2003. The study finds that per capita CO2 emissions increase with 
age till 65–69, and then emissions are likely to decrease. Like other developed countries, 
the US is also experiencing the population aging problem as the average life expectancy 
increased from 68 years to 79 years in the time-period 1950–2013 (Mather et al. 2015). The 
percentage of people aged 65 and older has increased steadily from 9% in 1960 to become 
15% in 2014 and is projected to be 24% by 2060 (Mather et  al. 2015). Zagheni (2011) 
projects that the anticipated change in US population age distribution in next four decades 
is likely to have a small but visible positive impact on CO2 emissions. However, existing 
literature on carbon emissions impact of population aging problem is sparse, and we aim 
to find new insights on this empirical question. Last but not the least, spatial variability in 
relationships among emissions and their determinants is a modeling issue as well. This 
spatial heterogeneity could be due to differences in societal factors that influence lifestyles, 
or state-level policies. In the context of US, Aldy (2005) assesses whether the relationship 
between per capita income and per capita CO2 emissions is equal across the states for the 
1960–1999 period, and shows that this relationship varies across the states. Although Vid-
eras (2014) has identified that determining what causes this regional variability in the US 
is an area for future research, till date no paper has taken up this issue.

This paper aims to contribute to the existing literature in the following ways. To the 
best of authors’ knowledge, this is the first STIRPAT type panel data analysis focusing on 
per capita GHG as a whole in the context of US. In this paper, along with typical covari-
ates used in a STIRPAT analysis we augment a few important factors like cattle population 
density, percentage of senior citizens in total population, and degree days.3 Last but not the 
least, the present study investigates the reasons behind spatial heterogeneity in the relation-
ship between emissions and their determinants across the US. In particular, this study aims 
to answer the following questions: do the emissions elasticities differ significantly in (1) 
pro-environmental states contrasted with the rest, and (2) more educated as opposed to less 
educated states? The rest of this paper is arranged as follows: Sect. 2 presents a short lit-
erature review focusing on the recent carbon STIRPAT and related studies for the US and 

3  Heating degree days (HDD) and cooling degree days (CDD) are used in calculations pertaining to build-
ing energy consumption (US Energy Information Administration 2012).
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other developed countries; Sect. 3 describes econometric method, data used, and empirical 
model specifications; Sect. 4 explains estimation results; and Sect. 5 concludes with a dis-
cussion on policy perspectives.

2 � Brief literature review

There exists a plethora of STIRPAT studies and extensions on CO2 emissions in the con-
text of developed and developing world (e.g., Fan et al. 2006; Liddle 2015). Many of these 
studies have focused on various econometric modeling approaches and factors that could 
influence emissions apart from traditional determinants used in a typical STIRPAT study. 
For instance, Jorgenson et al. (2016) use panel data on 50 US states for the time period 
1990–2012 to investigate the relationship between state-level residential carbon emissions 
and income inequality. They find that emissions elasticity of the income inequality meas-
ure (Theil Index) is 0.43. They argue that positive association between CO2 emission and 
income inequality in the US might be attributable to political economy effect and Veblen 
effect. In political economy effect, wealthy societies use their political influence to avoid 
carbon-control measure, whereas Veblen effect leads affluent households to overconsume 
the goods and services which are highly energy intensive for competing the overall sta-
tus in the society. Videras (2014) estimates a STIRPAT model using US county-level total 
CO2 emissions data for the year 2002 and geographically weighted regression technique 
which allows the relationship between regressand and regressors to vary over counties. He 
uses data from 48 contiguous states and estimates his model controlling for climatic condi-
tions by including average temperature of three coldest and three warmest months in the 
set of regressors. The presence of strong spatial heterogeneity in the emissions elasticities 
of various socioeconomic factors is found. Estimated elasticities vary in magnitude across 
the conterminous US and sometimes they differ in direction also. For instance, the south-
eastern states are found to have negative income elasticities—a finding that goes against 
standard STIRPAT results.

Few studies using cross-country panel data have indicated that age structure affects 
energy-related CO2 emissions. For example, Liddle and Lung (2010) employ STIR-
PAT model on panel data consisting of 17 OECD countries spanning the time period of 
1960–2005, to find that population’s environmental impact differs across the age group and 
older age group influences emissions negatively. Relationship between renewable energy 
use and CO2 emissions too has been overlooked most of the time. Using data on OECD 
countries from 1980 to 2011, Shafiei and Salim (2014) show that in the long run renew-
able energy consumption has a negative effect on CO2 emissions, whereas non-renewable 
energy consumption increases CO2 emissions. After performing Granger causality analysis, 
they find that there is a unidirectional causality from CO2 emissions to renewable energy 
consumption, whereas bidirectional causality exists from non-renewable energy consump-
tion to CO2 emissions. Recently, Squalli (2017) examines the relationship between renew-
able energy, coal, and GHG emissions utilizing US state-level data for the year 2010. He 
estimates separate STIRPAT models for CO2, methane, and nitrous oxide emissions to find 
that a 10% increase in renewable energy share leads to 0.26% drop in methane emissions. 
Moreover, if coal is used for baseload power, mitigation of nitrous oxide emissions requires 
curbing the share of coal use in energy production at the state-level below 41.47%.

Auffhammer and Steinhauser (2007) look into the role of legislators in the context of 
modeling probability of voluntary emissions cutbacks in the US. They introduce a novel 
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regressor—the League of Conservation Voters (LCV) scorecard indicator—which meas-
ures state-wise yearly percentage of favorable voting by elected representatives of the 
House and the Senate on environmental legislations. They find that the probability of an 
individual state proposing voluntary emission cutbacks positively depends on LCV score 
of the state in both the Senate as well as the House. Along the same line, Dietz et al. (2015) 
introduce a new regressor ‘environmentalism’ in the typical STIRPAT model and use state-
level panel data covering the time period 1990–2007. Environmentalism is being captured 
by a state’s Congressional delegation voting on the environmental issues. In other words, 
it captures the acceptance of environmental movement’s goals by part of the society which 
in turn being reflected in the politics and finally policies of the state. Their results suggest 
that although environmentalism alone does not have an effect on emissions, the combined 
impact of time trend and environmentalism is significant. This finding is indicative of the 
role of political goodwill to ameliorate the climate change impacts of the scale of economic 
activity.

3 � Materials and methods

3.1 � Econometric method

This paper employs a modified STIRPAT framework to investigate the driving factors 
behind changes in per capita GHG emissions, following the approach adopted by the 
majority of macro-environmental modeling type research. The two major complications 
of many panel data STIRPAT models are: (i) probable non-stationarity of observables and 
unobservables; and (ii) likely heterogeneity in the impact of observables and unobservables 
on emissions across cross-sectional units. In a panel STIRPAT analysis, many variables 
can show strong trends over time (O’Neill et  al. 2012). Homogeneity of model parame-
ters is unlikely to hold across a large group of cross-sectional units. Moreover, if panel 
data have in-built cross-sectional dependence, estimating panel regression models with 
homogeneous slope coefficients may yield biased estimated coefficients (Sadorsky 2014). 
Panel regression models with heterogeneous parameters can be estimated using various 
mean group (MG) estimators. The MG approach incorporates heterogeneity by permitting 
all slope coefficients and error variances to vary across cross-sectional units (Pesaran and 
Smith 1995). The MG approach applies ordinary least squares (OLS) regression method to 
each cross-sectional unit to obtain state-specific slope coefficients and then averages these 
state-specific coefficients. Although the MG estimator (Pesaran and Smith 1995) specifi-
cally accounts for heterogeneity, it may suffer from issues like autocorrelation and cross-
sectional dependence. Recent empirical studies have also mentioned the presence of spatial 
dependence in the CO2 emissions data across the contiguous US (Clement and Elliot 2012; 
Roberts 2011; Videras 2014).

The Pesaran and Smith (1995) MG estimator does not take care of cross-sectional 
dependence and non-stationarity. A new variant of MG estimator—augmented mean group 
(AMG) estimator—accounts for both of these issues (Eberhardt and Bond 2009; Eberhardt 
and Teal 2010). It accounts for cross-sectional dependence by inclusion of a ‘common 
dynamic process’ in the cross-sectional unit regression, representing mean evolution of 
unobserved common factors across all units (e.g., technological improvement, urbaniza-
tion,  intensification of livestock farming, increasing per capita consumption of meat and 
dairy products in our case). In the first step of AMG approach, pooled OLS regression 
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is run with T–1  year dummies in first differences and coefficients of year dummies are 
obtained. Each of the state regression models is then augmented with this new variable 
representing the common dynamic processes. Finally, the state-specific model parameters 
obtained in second step are averaged across the states, following MG approach. Sadorsky 
(2014) and Liddle (2015) have previously used AMG estimator while modeling energy 
intensity and carbon emissions elasticities, respectively. We employ AMG estimator by 
utilizing the xtmg command written for STATA (Eberhardt 2012). In addition, we utilize 
robust option with the xtmg command to construct the coefficient averages across states, 
which puts less emphasis on the outliers while computing the average of coefficients.

3.2 � Empirical models and data

A modified STIRPAT model, where emissions are represented in terms of per capita can be 
written as:

where I, P, A, X, α, i, and t represent environmental impact (GHG emissions), total pop-
ulation, affluence (represented by per capita State Gross Domestic Product or SGDP), 
other regressors, state-specific heterogeneity, state and year indicators, respectively, and 
ε denotes residual. Other regressors include renewable energy share, elderly population 
share, HDD + CDD index, and cattle density for which appropriate explanations and data 
sources are provided in the subsequent paragraphs. As recent econometric research on car-
bon emissions finds that an inverted-U relationship with per capita income (a.k.a. Environ-
mental Kuznets curve) is unlikely for per capita carbon emissions (Liddle 2015), we do not 
include a quadratic term for lnA in Eq. (1). In the context of deciding whether to incorpo-
rate a proxy for the technology variable explicitly or not, we follow the arguments by York 
et al. (2003b) and Wei (2011) that no proxy for technology is free of controversy and say 
that technology embedded in residual terms makes the model consistent with the original 
IPAT framework. Nonetheless, one of the widely accepted proxies for the technology vari-
ables is energy intensity defined as total energy used per unit of GDP (Liddle 2015). But 
then, some scholars (Itkonen 2012; Jaforullah and King 2017) argue that CO2 emissions 
estimates are implicitly calculated from the total energy use. Hence, incorporation of the 
energy use as a determinant of the emissions could lead to the endogeneity problem and 
consequently biased parameter estimates. Moreover, they also assert that total energy use 
and output produced in an economy might be highly correlated which in furtherance could 
change the magnitude and sign of the estimated coefficient of the former. In this regard, 
they clearly mandate that incorporation of total energy use as an independent determinant 
of CO2 emissions should cease. Zhu and Peng (2012) argue that the incorporation of dif-
ferent technology proxies has ended up with wide range of elasticity values of fundamental 
explanatory variables like GDP. Hence, in our adjusted STIRPAT model we do not use an 
explicit proxy for technology (e.g., Zhu and Peng 2012).

We presume that there are groups in the population (in this case, full sample of 48 
states) and entities (here, states) in these groups behave in dissimilar ways. But we do not 
have a prior knowledge regarding the variable which detects these groups. Let us assume 
that political support for an environmental cause and educational attainment of the citi-
zens may be good classifiers. In other words, we wish to categorize states based on their 
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political and educational profile (observables) into different homogeneous groups of emit-
ters so that we can figure out whether the driving forces behind per capita GHG emissions 
have differential impacts in these groups or not. To account for the heterogeneity in popula-
tion arising from these factors, we partition the full sample twice with respect to two con-
trolling factors: an indicator of political support to environmental causes; and educational 
attainment. Forty-eight states are ranked with respect to each of these factors, and top 20 
and bottom 20 in each list are considered as HIGH and LOW group of states with respect 
to the particular factor. Details of these four created groups are provided later.

The data employed in the current study are a balanced panel of 48 states covering time 
period of 25 years (1990–2014). Dependent variable is per capita GHG emissions in metric 
tons of CO2 equivalent (MT). State-level aggregated emissions data are retrieved from the 
World Resources Institute (WRI 2017). The WRI provides data on per capita GHG emis-
sions without land use change and forestry for the time period 1990–2014. Real per capita 
SGDP data are sourced from the Bureau of Economic Analysis (BEA), US Department of 
Commerce. Attributable to the change in GDP accounting methodology, we merge two real 
SGDP data series, one covering the span of 1990–1996 at constant 1990 prices and another 
covering years 1997–2014 at constant 1997 prices. Following Dietz et al. (2015), we recal-
ibrate the 1990–1996 real SGDP series by getting a slope coefficient and constant term 
after regressing 1997 SGDP values from newer series (1997–2014) on the values from the 
older series (1990–1997).

Renewable energy share in total energy consumption is retrieved from the State Energy 
Data System, US Energy Information Administration. Disaggregated population statistics, 
i.e., elderly population (age ≥ 65 years) share in total population data, are retrieved from 
the estimates provided by the US Census Bureau. Data on state-level aggregate HDD and 
CDD are taken from the Climate Prediction Center, National Weather Service. We obtain 
HDD + CDD index as simple sum of the HDD and CDD following Sivak (2008) who 
argues this index to be the simplest possible climatological variable to model the change in 
energy demand due to climatic conditions. National Agricultural Statistics Service of the 
US Department of Agriculture provides state-wise estimates on number of cattle. Moreo-
ver, state-wise land area in square mile is extracted from the US Census Bureau to arrive at 
the cattle density defined as the number of cattle per square mile.

Following Dietz et al. (2015), this paper assumes that ideology of members of Congress 
reflects state political ideology and uses pro-environmental voting behavior by the state 
Congress members to appraise the environmental concern in the respective state. The LCV 
compiles data on each state’s respective congressional voting toward environmental issues 
and tabulates Senate score and House score for various years, and makes  the data avail-
able online. Average of these two scores gives us environmentalism scores for each state 
over the time period 1990–2014. Consequently, a unique indicator of pro-environmental 
attitude for each state is generated by averaging the yearly environmentalism scores over 
the time span of study. Based on that state-level mean environmentalism score, we rank 48 
states and then partition the sample in two groups (see Fig. 3): top 20 pro-environmental 
states (hereinafter, ENV_HIGH) and bottom 20 states (hereinafter, ENV_LOW) to inves-
tigate whether the emissions  elasticities pertaining to covariates of interest vary accord-
ing to more homogenous groups controlling for political ideology and attitude to environ-
ment. Note that most states in ENV_LOW group are historically strong Republican states.4 

4  We call a state ‘Strongly Republican’ if the state is carried by the Republican Party in at least three of the 
four presidential elections (years: 2000, 2004, 2008, 2012).
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Moreover, Figs. 2 and 3 show that states which are historically inclined toward Democrats, 
such as California, Massachusetts, New York, and Washington, are more concerned about 
the environment (reflected by high environmental score), and emitted less per capita GHG 
than other states in 2014. Whereas, strong Republican states such as Georgia, Texas, and 
Utah (with low environmental score) emitted comparatively higher per capita GHG. Thus, 
political ideology has a strong influence on attitude to environment and hence per capita 
GHG emissions. For the other dividing factor (level of higher education), same strategy is 
applied for sample partitioning. We collect educational attainment data from the US census 
Bureau and concentrate on the ‘highly educated’ group defined as percentage of the popu-
lation aged 25 years and above having bachelor’s degree or higher. When higher education 
status is used to split the sample, top 20 states’ and bottom 20 states’ groups are titled as 
EDU_HIGH and EDU_LOW, respectively.

4 � Empirical results and discussion

Interesting insights could be obtained from summary statistics based on the full and par-
titioned samples which are given in Table  1. Mean and median measures are shown to 
convene the differences between variables of interest among the groups at the beginning 
and end of the study period. A decline in per capita GHG emissions, over the study period, 
is noticed for all three sample categories (A–C). Per capita SGDP and elderly population 
percentage rise significantly in all groups, whereas cattle density shows a negative trend. A 
very small portion of energy use comes from renewables, and insignificant expansion has 
taken place from 1990 to 2014. For both years, i.e., 1990 and 2014, mean GHG per capita 
emission comes out to be considerably lower in ENV_HIGH and EDU_HIGH groups as 
compared to their counterparts. To test whether the concerned samples (two in this case) 
are coming from a population with same central tendency (or, location of the distribution), 
we focus on median in the place of mean as the sample size is small (20 states in a particu-
lar year). Null hypothesis of the Median test is that the samples are drawn from populations 

Fig. 3   State-level average environmentalism score
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with same median. Comparison of median values shows that ENV_HIGH and EDU_HIGH 
groups emit less per capita GHG than their counterparts. In addition, median test corrobo-
rates these findings for the ENV_HIGH and EDU_HIGH groups.5 Said otherwise, statisti-
cally different median values in the partitioned samples corroborate our choice of sample 
partitioning and motivate to estimate group-specific regressions in order to see whether 

Table 1   Descriptive statistics for selected years

Variable Year Measure A: Full 
sample (48 
states)

B: Split regarding envi-
ronmentalism status

C: Split regarding educa-
tional attainment status

ENV_HIGH ENV_LOW EDU_HIGH EDU_LOW

GHG per capita 
(MT)

1990 Mean 31.01 25.20 38.70 20.70 38.60
Median 24.51 17.48 35.02 17.23 28.12

2014 Mean 29.45 24.00 36.10 17.90 36.50
Median 21.95 14.41 29.58 13.49 28.58

SGDP per capita 
($)

1990 Mean 33,157 36,501 30,643 37,682 30,084
Median 32,333 37,239 30,263 36,920 29,831

2014 Mean 47,238 51,607 43,439 52,654 41,692
Median 46,172 52,900 43,191 52,900 41,671

Renewable energy 
(%)

1990 Mean 0.79 0.90 0.68 0.83 0.81
Median 0.43 0.37 0.31 0.37 0.63

2014 Mean 1.00 1.12 0.80 1.01 1.04
Median 0.65 0.67 0.65 0.63 0.67

Elderly popula-
tion (%)

1990 Mean 12.66 12.66 12.05 12.14 13.03
Median 12.65 12.78 12.48 12.30 12.65

2014 Mean 15.04 15.34 14.32 14.49 15.51
Median 15.04 15.21 14.44 14.44 15.26

Heating degree 
days

1990 Mean 1937 2165 1733 2061 1732
Median 1928 1982 1475 1982 1663

2014 Mean 1957 2168 1729 2057 1795
Median 2022 2056 1702 2030 1702

Cooling degree 
days

1990 Mean 1100 688 1455 778 1372
Median 835 600 1446 716 1222

2014 Mean 999 628 1341 696 1262
Median 730 475 1301 604 1179

Cattle density 1990 Mean 30.62 22.10 35.60 26.60 32.50
Median 27.15 19.37 27.15 25.25 29.44

2014 Mean 26.98 18.20 32.10 23.40 28.30
Median 22.18 16.36 24.30 18.42 24.54

5  Details of Median test results are as follows. Results from environmentalism-based partition: (a) 
Year = 1990, χ2(1) = 6.4; Probability > χ2 = 0.01; (b) Year = 2014, χ2(1) = 6.4; Probability > χ2 = 0.01. 
Results from educational attainment-based partition: (a) Year = 1990, χ2(1) = 3.6, Probability > χ2 = 0.05; (b) 
Year = 2014, χ2(1) = 6.4, Probability > χ2 = 0.01.
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Table 2   Augmented mean group 
estimates for pooled US sample 
(48 states)

Standard errors in parentheses
***p < 0.01; **p < 0.05; *p < 0.1

Variables Full sample
(Model 1)

ln SGDP per capita 0.0717**
(0.0347)

ln Renewable energy share (%) −0.0526***
(0.0121)

ln Elderly population share (%) 0.0276***
(0.00343)

ln HDD + CDD 0.0309***
(0.00781)

ln Cattle density 0.134***
(0.0410)

Common dynamic process 1.084***
(0.0989)

Constant 1.729***
(0.378)

RMSE 0.026
Observations 1200
Number of states 48

Table 3   Augmented mean group estimates for partitioned samples

Standard errors in parentheses
***p < 0.01; **p < 0.05; *p < 0.1

Variables ENV_HIGH
(Model 2)

ENV_LOW
(Model 3)

EDU_HIGH
(Model 4)

EDU_LOW
(Model 5)

ln SGDP per capita ($) 0.102*
(0.0548)

0.128**
(0.0522)

−0.158**
(0.0676)

0.135***
(0.0343)

ln Renewable energy share (%) −0.0632***
(0.0156)

−0.0356*
(0.0187)

−0.0576***
(0.0185)

−0.0471**
(0.0210)

ln Elderly population share (%) 0.0842***
(0.00972)

0.0283***
(0.00545)

0.103***
(0.0131)

−0.00370
(0.00388)

ln HDD + CDD 0.0401***
(0.00764)

0.0307*
(0.0163)

0.0202*
(0.0108)

0.0212*
(0.0123)

ln Cattle density 0.107*
(0.0647)

0.119**
(0.0571)

0.0877
(0.0721)

0.194***
(0.0614)

Common dynamic process 1.123***
(0.136)

1.016***
(0.138)

1.129***
(0.139)

0.932***
(0.133)

Constant 1.283*
(0.662)

1.420**
(0.605)

3.652***
(0.735)

1.366***
(0.371)

RMSE 0.030 0.021 0.030 0.024
Observations 500 500 500 500
Number of states 20 20 20 20
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that leads to different emissions elasticities. Table 2 shows regression results for the con-
tiguous US (Model 1), and Table 3 elicits the regression results for environmentalism and 
educational attainment-based partitioned datasets (Models 2–5). Detailed analytical discus-
sion on estimated models is presented in the following paragraphs.  

Let us first focus on results from Model 1 (based on full sample) shown in Table 2. In 
this model, per capita SGDP, elderly population share, HDD + CDD index, and cattle den-
sity affect emissions positively. On the other hand, renewable energy share influences emis-
sions negatively. Regression coefficient of a log transformed regressor used in a STIRPAT 
model  is to be interpreted as ‘ecological elasticity’ (York et  al. 2003b) which in our case 
measures the proportional change in per capita GHG emissions due to a one percent change 
in that regressor, while other factors are held constant. The estimated coefficient values are 
indicative of inelastic relationships, where impact is less responsive to changes in a particular 
regressor. A 1% increase in per capita SGDP leads to a 0.0717% increase in GHG emissions, 
net of the effects of other covariates. Elasticity with respect to the older population share is 
found to be 0.027. Positive and significant elasticity of the older population share is in agree-
ment with the findings by Zagheni (2011) who estimates that aging of the US population 
will cause CO2 emissions to rise marginally until 2050. Elasticity for renewable energy share 
is − 0.053, meaning that emissions decline in lesser proportion to an increase in the renew-
able energy share. A negative elasticity for renewable energy share is also reported by Shafiei 
and Salim (2014) in their STIRPAT study on OECD countries. Elasticity with respect to the 
HDD + CDD index comes out to be around 0.031, and a positive elasticity for HDD + CDD 
index is in the line with literature (Aldy 2005; Auffhammer and Steinhauser 2007; Marcotul-
lio et al. 2013). Elasticity with respect to cattle density is reported to be 0.134. Among the 
considered regressors, cattle density evidently appears to be the most important driver of per 
capita GHG emissions in 48 adjoining states. There is strong presence of common dynamic 
process in the data, which can be thought of as characteristics of technological change and 
socioeconomic transitions (Eberhardt and Teal 2010).

Table 3 provides regression results for the environmentalism-based groups ‘ENV_HIGH’ 
and ‘ENV_LOW’ (Models 2 and 3), and educational attainment-based groups ‘EDU_HIGH’ 
and ‘EDU_LOW’ (Models 4 and 5). To start with, let us focus on results from environmen-
talism-based partitioned samples. Emissions elasticity of per capita SGDP comes out to be 
0.128 with statistical significance in the ‘ENV_LOW’ panel, while it remains weakly signifi-
cant in the ‘ENV_HIGH’ group with a relatively lower value of 0.102. It implies that rise in 
affluence may not play a noteworthy role in driving emissions in the ‘ENV_HIGH’ group. 
There are some more interesting observations. Elasticities of the share of elderly population 
having age more than or equal to 65 come out to be different as well, 0.084 and 0.028 for 
the ‘ENV_HIGH’ and ‘ENV_LOW’ group of states, respectively. Elasticity of the renew-
able energy share comes out to be -0.063 and -0.035 for the ‘ENV_HIGH’ and ‘ENV_LOW’ 
group, respectively, but statistical significance is weak in the later case. It signifies that renew-
able energy may not have played a noteworthy role in bringing down state-level per capita 
emissions in the ‘ENV_LOW’ group of states, because of its infinitesimal presence. Emis-
sions elasticities for the HDD + CDD index are found to be significant with value of 0.04 for 
the ‘ENV_HIGH’ sample, but weakly significant in the ‘ENV_LOW’ sample. Now coming 
to the cattle density, its elasticity comes out to be weakly significant for ‘ENV_HIGH’ states 
but emerges to be significant in its counterpart with a value of 0.119. Coefficient for common 
dynamic process is significant in both cases. If we focus on strong statistical significance 
(p < 0.05) then among the considered driving forces, elderly population share emerges as the 
factor with highest elasticity value in the ‘ENV_HIGH’ group, whereas per capita SGDP has 
the highest elasticity in the ‘ENV_LOW’ group.
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Next, we move to Model 4 and Model 5, estimated models for the state groups ‘EDU_
HIGH’ and ‘EDU_LOW,’ respectively. First, we focus on the emissions elasticity of per 
capita SGDP which comes out to be 0.135 and − 0.158 for the ‘EDU_LOW’ and ‘EDU_
HIGH’ group correspondingly. Evidently, states with higher proportion of graduates do 
experience decrease in emissions with increasing affluence ceteris paribus. Renewable 
energy share influences emissions negatively with elasticities as − 0.057 and − 0.047 
for the ‘EDU_HIGH’ and ‘EDU_LOW’ samples individually. Older population share 
affects emissions positively with elasticity of 0.103 in the ‘EDU_HIGH’ group, whereas 
it remains insignificant in the ‘EDU_LOW’ group. The coefficient of HDD + CDD index 
comes out to be weakly significant in both samples with values around 0.02, whereas 
the coefficient of cattle density is positive and significant for the ‘EDU_LOW’ group 
only. As usual, coefficient for common dynamic process is significant in both cases. If 
we focus on strong statistical significance (p < 0.05) then among the considered driv-
ing forces, elderly population share again emerges as the most important factor behind 
emissions in the ‘EDU_HIGH’ group (similar to the case of ‘ENV_HIGH’ states), 
whereas cattle density has the highest elasticity in the ‘EDU_LOW’ group.

Summarizing all of the empirical outcomes reported in this paper, the following sali-
ent facts emerge. First, cattle density and per capita SGDP are identified to be major 
drivers of per capita GHG emissions in the US. Second, although societal factors like 
educational attainment and politics are not introduced as separate explanatory variables 
to maintain enough degrees of freedom in regression models, they play substantial role 
in order to form homogenous groups over which estimates of major ecological elas-
ticities would vary significantly. Third, we observe that increasing affluence does not 
always result in higher emissions. One percent increase in per capita SGDP in ‘EDU_
HIGH’ group will lead to a fall in per capita GHG emissions. In fact, if a strict criterion 
(p < 0.05) is used, one can infer that further rise in per capita SGDP in ‘ENV_HIGH’ 
group will not lead to significant change in emissions. Fourth, renewable energy share 
impacts emissions negatively with low elasticity values in the range (− 0.047, − 0.063). 
Fifth, aging population affects emissions positively with elasticity values in the range 
(0.028, 0.103) and has a major role in some states (common states in ‘ENV_HIGH’ and 
‘EDU_HIGH’ groups).

Results associated with sample partitioning exercise have some policy implications. 
These partitioned samples and related model estimations enable us to identify a set of states 
which are performing better and a set of states which are posing serious challenges in order 
to achieve GHG reduction targets. The first set consists of common states in ‘ENV_HIGH’ 
and ‘EDU_HIGH’ groups. This ‘leaders’ group comprises of 13 states: California, Con-
necticut, Delaware, Illinois, Maryland, Massachusetts, Minnesota, New Jersey, New York, 
Oregon, Rhode Island, Vermont, and Washington. Excepting Illinois, other states are part 
of the US Climate Alliance initiative as of now. Whereas the second set of states are com-
mon states in ‘ENV_LOW’ and ‘EDU_LOW’ groups. This ‘laggards’ group is made up 
of 11 states: Alabama, Idaho, Indiana, Kentucky, Louisiana, Mississippi, North Carolina, 
Oklahoma, South Carolina, Tennessee, and Wyoming. According to the latest US Energy 
Information Administration data, Wyoming and Kentucky appear in the list of top five 
states that supply about 70% of the US total coal production. McDermott (2009) observes 
that maximum use of that coal takes place in energy sector and most of that demand comes 
from the middle and southeastern parts of the US. States which do not belong to any of 
these two groups are designated as ‘average performers’. Figure 4 depicts these best, aver-
age, and worst performer states, and one can see a high concentration of ‘laggards’ in the 
southern US.
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Except for Indiana, none of these ‘laggards’ has adopted ‘Energy Efficiency Resource 
Standard’6 (EERS) and only Oklahoma and Indiana have accepted ‘Renewable Portfolio 
Standard’ (RPS) as per a government report (US Department of State 2014). However, 
North Carolina joined the US Climate Alliance initiative recently. The ‘laggards’ group 
requires special attention from policymakers if they wish to put a check on future GHG 
emissions from these states. A matter of concern is that some of these ‘laggards’ are also 
the states experiencing a steady rise in human and cattle population. Idaho and South Caro-
lina rank 9th and 10th, respectively, in population growth over 2010–2016 according to the 
most recent estimates available from the US Census Bureau. Moreover, Idaho ranks 3rd 
and 4th in growth of cow population and average herd size, respectively, over 2006–2016 
(Progressive Dairyman 2017). The success of GHG mitigation initiative in the US looks 
bleak unless the stakeholders succeed to mold public attitude toward climate change by 
spreading awareness and providing economic incentives to adopt low carbon lifestyle in the 
‘laggard’ states. Following Dietz et al. (2015), politics can play a vital role in adoption of 
climate change policies like EERS and RPS as soon as possible to ameliorate the effects of 
the scale of economic activity.

5 � Conclusion

To the best of authors’ knowledge, this article presents the first panel data analysis of state-
level per capita GHG emissions in the US for the  period 1990–2014. This study offers 
modest contributions to the related STIRPAT literature at least in two ways. First, we 
incorporate a novel explanatory variable—cattle population density—in estimating a ver-
sion of the STIRPAT equation to consider the important role of growing livestock sector, 
a hitherto understudied and overlooked factor. Second, our research provides classification 
of states into more homogeneous groups and finds heterogeneity in emissions elasticities 

Fig. 4   Leader and laggard states in the context of GHG emissions performance

6  EERS emphasizes on long-term energy savings target by achieving certain percentage reduction in the 
total energy sales from energy efficiency measures. RPS requires that electric utilities are supposed to pro-
duce certain percentage of the total electricity generated from renewable sources. Interested reader may 
refer to Carley and Browne (2013) for details.
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in terms of (i) political attitude toward environment and (ii) educational attainment. We 
accommodate presence of inter-state heterogeneities by partitioning the conterminous US 
in four groups (top 20 states and bottom 20 states with respect to each of the above-men-
tioned social factors), and employing heterogeneous slope parameters panel data model for 
each group. We successfully categorize states based on their political behavior and educa-
tion profile into different types of emitters (high intensity or ‘laggards’ and low intensity or 
‘leaders’).

Regression results based on the full sample suggest that per capita SGDP, cattle popula-
tion density, population share of senior citizens, and degree-days impact per capita GHG 
emissions positively whereas share of renewable energy in the total energy consumption 
affects emissions negatively. Cattle density and per capita SGDP are identified to be major 
drivers of per capita GHG emissions in the contiguous US. Estimations based on created 
groups of states indicate that these factors impact emissions differently across these groups. 
Broadly, they vary in magnitude and sometimes differ in direction too. For instance, emis-
sions elasticity for per capita SGDP is negative for top 20 states with respect to percentage 
of adults having completed graduation. Thus, an increase in the overall educational attain-
ment of the society may play a pivotal role to mitigate GHG emissions. Findings from our 
grouping analysis suggest that in a diverse country like US, policymakers should not focus 
on the average relationships dictated by a single STIRPAT equation, but should account 
for regional differences if they want accuracy and higher effectiveness in federal policy-
making. In order to lower GHG emissions, the stakeholders have to focus on those states 
which are lagging behind in educational attainment and convince the public, politicians, 
and legislators of these states to implement green energy policies. Political attitude to cli-
mate change will play a big role in the future, especially in the ‘laggard’ states. It has been 
observed that scientific information-based propaganda has had a negligible effect on public 
concern about the threat of climate change, while political mobilization by elites and advo-
cacy groups play a crucial role in this matter (Brulle et al. 2012). Thus, as voiced by Ripple 
et al. (2014), political will to commit resources to mitigate energy emissions and control 
growing livestock sector is highly warranted in order to fight climate change.
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